翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Automated Radar Terminal System : ウィキペディア英語版
Common ARTS
Common ARTS (or Automated Radar Terminal System) is an air traffic control computer system that air traffic controllers use to track aircraft.
The computer system is used to automate the air traffic controllers job by correlating the various radar and human inputs in a meaningful way. This system is being used in most of the TRACONs around the United States. Common ARTS is the most modern implementation of ARTS in use at various locations in the United States. Standard Terminal Automation Replacement System (STARS) was designed to replace Common ARTS at all the US TRACONS, however that project was stalled until 2010.
The United States Federal Aviation Administration announced in Spring 2011 that STARS will be replacing the 11 largest CARTS sites under the TAMR Segment 3 Phase 1 plan. The remaining CARTS sites will be replaced under TAMR Segment 3 Phase 2 in the near future.
==RADAR Automation==

A typical short range radar used in air traffic control will scan the area about 60 miles every 4–6 seconds. The primary signal returned will contain a range and azimuth of a target. Automation will correlate these targets scan to scan and make estimates of speed and direction. A secondary signal (Transponder (aviation)) may be available, containing the aircraft transponder code, and possibly altitude (and possibly other information if Mode S). The automation will correlate the primary and secondary signals, and measure horizontal and vertical speed estimates.
Once the automation systems know the details of the aircraft it is tracking, this information is available on the display, as part of the datablock near the aircraft representation. The information will typically show an aircraft ID, if the transponder code is associated with a known flight plan, the altitude, and speed.
Other systems can use the speed and direction information. The safety systems need to use this information. The conflict alert (CA) system will compare the direction, altitude and speed of multiple aircraft to see if there are any possibilities of aircraft being too close together. Maps of the area along with Mode C or S transponder elevations will allow Minimum Safe Altitude Warning (MSAW) systems to warn controllers of possible terrain conflicts.
Additional systems may include any of the Final Approach Spacing (FAST/pFAST) tools available, User Request Evaluation Tool, and Parallel Runway monitors.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Common ARTS」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.